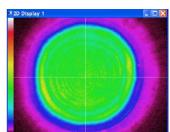

Powerlite DLS Plus Series - Energy and Beam Quality

The Powerlite Plus Series is an ideal solution when higher levels of green energy are required for the pumping of Ti:Sapphire laser systems.


High energy, high repetition rate Ti:Sapphire systems are using multiplexed standard lasers as the amplifier pump source. When more energy is required, more lasers are needed.

The Powerlite Plus 2 J and 2.5 J lasers are the best alternative to the complex relay imaging systems delivering the multitude of beams to the amplifier crystal. At 2 J and 2.5 J at 532 nm, the Powerlite Plus Series is the industry leader in terms of energy and beam quality. This is made possible by the implementation of the Faraday Isolator between the oscillator and amplifier, which allows the amplifier to run at its peak performance.

For dollars per Joule, the Powerlite Plus Series lasers make economic sense.

Powerlite Plus 2J Beam Quality -

High Energy Nd:YAG High Energy Nd:YAG High Energy Nd:YAG High Energy Nd:YAG

Distributed intelligence, with microprocessors in both the laser head and power supply for more precise system control

Rack mounted and modular components for easier maintenance and service

New cooling group with active digital control for acurate temperature monitoring and improved thermal management

Standard, powerful Windows®based Graphical User Interface for complete control of all system functionality

LabView drivers available

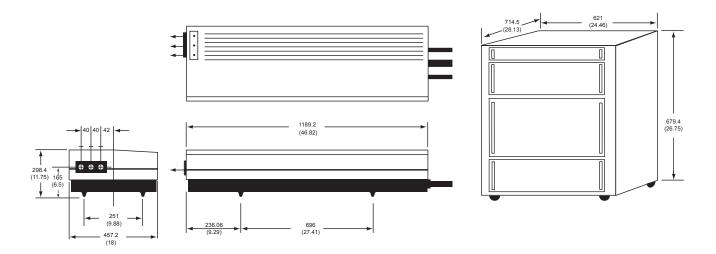
Powerlite Plus 2.5 J Beam Quality - 2.5 J at 532 nm

Powerlite Plus Series Specifications

<u> Powerlite Plus .</u>	series s	pecificat	uons
Description	Plus	Plus 2 J	Plus 2.5 J
Repetition Rate (Hz)	10	10	10
Energy (mJ)			
1064 nm	3000	3500	3500
532¹ nm	1500	2000	2500
355² nm	800	NA	NA
266 nm	160	NA	NA
Pulsewidth ³ (nsec)			
1064 nm	5-9	5-9	5-9
532 nm	4-8	4-8	4-8
355 nm	3-7	NA	NA
266 nm	3-6	NA	NA
_inewidth⁴ (cm-¹)			
Standard	1	1	1
Injection Seeded, SLM	0.003	0.003	0.003
Divergence⁵ (mrad)	0.45	0.45	0.45
Beam Pointing Stability ⁶ (±µrad)	30	30	30
Beam Diameter (mm)	12	12	12
litter ⁷ (±ns)			
Unseeded	0.5	0.5	0.5
Seeded	1.0	1.0	1.0
Energy Stability ⁸ (±%)			
1064 nm	2.5; 0.8	2.5; 0.8	2.5; 0.8
532 nm	3.0; 1.0	3.0;1.0	3.0; 1.0
355 nm	4.0; 1.3	NA	NA
266 nm	8.0; 2.6	NA	NA
Power Drift ⁹ (±%)			
1064 nm	3.0	3.0	3.0
532 nm	6.0	6.0	6.0
355 nm	6.0	NA	NA
266 nm	8.0	NA	NA
Beam Spatial Profile (Fit to Gaussian) ¹⁰			
Near Field (<1m)	0.7	0.7	0.7
Far Field (∞)	0.95	0.95	0.95
Max Deviation from fitted Gaussian ¹¹ (±%)		
Near Field (<1m)	40	40	40
Service Requirements			
200-240 VAC, single Φ	21A	30A	30A
Water GPM at 10-40 PSI	1-2	1-2	1-2
Polarization			
1064, 355, 266 nm		Horizontal	
532 nm		Vert	tical

Notes

- Using Type II doubler
 Using Type I doubler
 Type I doubler
 Type I doubler
 Type I doubler
- 4. FWHM $(1 \text{cm}^{-1} = 30 \text{ GHz})$
- 5. Full angle for 86% (1/e²)
- 6. 99.9% shots will be $<\pm30$ µrads with $\Delta T_{room} < \pm 3^{\circ}C$
- 7. With respect to external trigger 8. The first value represents shot-to-shot for 99.9% of pulses, the second value represents
- 9. Average for 8 hours with ΔT±3°C
- 10. A least squares fit to a Gaussian profile. A perfect fit would have a coeffficient of 1.
- 11. Within FWHM points near field at 1 meter.


All specifications at 1064 nm unless otherwise noted. As a part of our continuous improvement program, all specifications are subject to change without notice.

Powerlite Plus Series System Requirements

Size	Optical Head (LxWxH)	1189.2 x 457.2 x 298.4 mm (46.82" x 18" x 11.75")
	Power Supply (LxWxH)	714.5 x 621 x 679.4 mm (28.13" x 24.46" x 26.75")
Water	Service	1-2 GPM (gallons/minute) at 10 - 40 PSI pressure drop
	Temperature	<22° C / 70° F (higher flow rate for higher temperature)
Electrical Service		200 - 240 VAC, single φ, 50/60 Hz
Room Temperature		18 to 30° C / 65 to 87° F
Umbilical Length		5 m (16.4 ft)

Powerlite Plus Series Physical Layout All dimensions are in mm (inches)

Continuum 140 Baytech Drive, San Jose, CA Tel (408) 727-3240 www.continuumlasers.com

