Powerlite DLS 9000

Powerlite DLS 9000 Series

The Powerlite Series of high energy YAG lasers is known for its beam quality, reliability, and ease of use. The New DLS (Digital Laser Source) Series remains consistent with the Continuum approach to laser design, keeping the features that have made it so popular, and adding new capabilities to enhance its performance and utility.

The DLS power supply is compact and quiet, taking up half the space of the one it replaces. The components are modular and

rack mounted to simplify maintenance and service. It uses distributed intelligence, with microprocessors in both the laser head and power supply. Communications from the head to the supply are digital and much more reliable than TTL and analog inputs.

A new cooling group with active digital control has been added for more accurate monitoring of pump chamber temperatures. Better water management to the laser head lowers pump chamber operating temperatures for

improved performance and reliability.

The complete control of all functionality is made possible through a digital interface, thus eliminating the need for knobs or switches.

A powerful Windows[®]-based Graphical User Interface is standard for all Powerlite DLS systems. An optional touch screen remote control is available, as are LabView drivers.

High Energy Nd:YAG High Energy Nd:YAG High Energy Nd:YAG High Energy Nd:YAG

Distributed intelligence, with microprocessors in both the laser head and power supply for more precise system control

Rack mounted and modular components for easier maintenance and service

New cooling group with active digital control for acurate temperature monitoring and improved thermal management

Standard, powerful Windows®based Graphical User Interface for complete control of all system functionality

LabView drivers available

Powerlite DLS 9000 Specifications

<u>FOWEINE DLS 90</u>	<u>00 J</u>	DECH	<u>icatic</u>		
Description	9010	9020	9030	9050	
Repetition Rate (Hz)	10	20	30	50	
Energy (mJ)					
1064 nm	2000	1800	1600	1200	
532 ¹ nm	1000	900	800	600	
355² nm	550	475	400	350	
266 nm	160	110	90	75	
Pulsewidth ³ (nsec)					
1064 nm	5-9	5-9	5-9	5-9	
532 nm	4-8	4-8	4-8	4-8	
355 nm	3-7	3-7	3-7	3-7	
266 nm	3-6	3-6	3-6	3-6	
Linewidth ⁴ (cm ⁻¹)					
Standard	1	1	1	1	
Injection Seeded, SLM	0.003	0.003	0.003	0.003	
Divergence⁵ (mrad)	0.45	0.45	0.5	0.5	
Beam Pointing Stability ⁶ (±µrad)	30	30	30	30	
Beam Diameter (mm)	9	9	9	9	
Jitter ⁷ (±ns)					
Unseeded	0.5	0.5	0.5	0.6	
Seeded	1.0	1.0	1.0	1.0	
Energy Stability ⁸ (±%)					
1064 nm	2.5;0.8	2.5;0.8	2.5;0.8	3.0;1.0	
532 nm	3.0;1.0	3.0;1.0	3.0;1.0	4.0;1.3	
355 nm	4.0;1.3	4.0;1.3	4.0;1.3	6.0;2.0	
266 nm	8.0;2.6	8.0;2.6	9.0;3.0	9.0;3.0	
Power Drift ⁹ (±%)					
1064 nm	3.0	3.0	3.0	3.0	
532 nm	6.0	6.0	6.0	6.0	
355 nm	6.0	6.0	6.0	6.0	
266 nm	8.0	8.0	8.0	8.0	
Beam Spatial Profile (Fit to Gaussian) ¹⁰					
Horizontal Near Field (<1m)	0.7	0.7	0.7	0.65	
Far Field (∞)	0.95	0.90	0.90	0.90	
Max Deviation from fitted Gaussian ¹¹ (\pm %)					
Near Field (<1m)	40	40	40	40	
Service Requirements					
208-240 VAC, single Φ	14A	21A	24A	35A	
Water GPM at 10-40 PSI	1-2	1-2	2-3	2-3	
Polarization					
1064 nm		Horizontal			
532 nm		Vertical			
355 nm		Horizontal			
266 nm		Horizontal			

Notes

Using Type II doubler
Using Type I doubler
FWHM full width half max

4. FWHM (1cm⁻¹ = 30 GHz)

5. Full angle for 86% (1/e²)

6. 99.9% shots will be $<\pm30 \mu$ rads with

 $\Delta T_{room} < \pm 3^{\circ}C$

7. With respect to external trigger

8. The first value represents shot-to-shot for 99.9% of pulses, the second value represents RMS

9. Average for 8 hours with ΔT±3°C

10. A least squares fit to a Gaussian profile. A perfect fit would have a coefficient of 1. 11. Within FWHM points near field at 1 meter.


All specifications at 1064 nm unless otherwise noted. As a part of our continuous improvement program, all specifications are subject to change without notice.

Powerlite DLS 9000 System Requirements

Size	Optical Head (LxWxH)	1189.2 x 457.2 x 298.4 mm (46.82" x 18" x 11.75")		
	Power Supply (LxWxH)	714.5 x 621 x 546.1 mm (28.13" x 24.46" x 21.5")		
		PL 9050: 714.5 x 621 x 679.4 mm (28.13" x 24.46" x 26.75")		
Water	Service	1-2 GPM (gallons/minute) at 10 - 40 PSI pressure drop		
	Temperature	<22° C / 70° F (higher flow rate for higher temperature)		
Electrical Service		200 - 240 VAC, single φ, 50/60 Hz		
Room Temperature		18 to 30° C / 65 to 87° F		
Umbilical Length		5 m (16.4 ft)		

Powerlite DLS 9000 Physical Layout All dimensions are in mm (inches)

Continuum 140 Baytech Drive, San Jose, CA Tel (408) 727-3240 www.continuumlasers.com

992-0086, Rev. H 06/15

