1.2.3 High Energy Pyroelectric Sensors

$20 \mu \mathrm{~J}$ to 10 J

Features

- Sensors with diffuser for high energies
and high energy densities
- Metallic coating for high rep rates
- BF coating for highest damage threshold
- Wide spectral range. Measure YAG and harmonics and many more.
- Rep rates up to 10 kHz
- Measure lasers with pulse widths up to 20 ms

PE25BF-DIF-C
Complete calibration curve. High damage threshold

Aperture mm	Ø35					Ø20				
Absorber Type	Metallic with diffuser					BF with diffuser				
Spectral Range $\mu \mathrm{m}{ }^{(a)}$	0.19-2.2, 2.94					0.24-2.2				
Surface Reflectivity \% approx.	25					25				
Calibration Accuracy +/-\% ${ }^{(a)}$	4					4				
Max Pulse Width Setting ${ }^{\text {d }}$ ($2 \mu s$	$30 \mu s$	500 $\mu \mathrm{s}$	1 ms	5 ms	1 ms	2 ms	5 ms	10 ms	20 ms
Energy Scales	$\begin{aligned} & 10 \mathrm{~J} \text { to } \\ & 200 \mu \mathrm{~J} \end{aligned}$	10J to 200 μ	$\begin{aligned} & 10 \mathrm{~J} \text { to } \\ & 2 \mathrm{~mJ} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~J} \text { to } \\ & 2 \mathrm{~mJ} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~J} \text { to } \\ & 20 \mathrm{~mJ} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~J} \text { to } \\ & 2 \mathrm{~mJ} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~J} \text { to } \\ & 2 \mathrm{~mJ} \end{aligned}$	10 J to 20 mJ	$\begin{aligned} & 10 \mathrm{~J} \text { to } \\ & 20 \mathrm{~mJ} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~J} \text { to } \\ & 20 \mathrm{~mJ} \end{aligned}$
Lowest Measurable Energy $\mu \mathrm{J}$ (c)	20	20	100	120	200	100	150	200	200	300
Max Pulse Width ms	0.002	0.03	0.5	1	5	1	2	5	10	20
Maximum Pulse Rate pps	10 kHz	5 kHz	900 Hz	450 Hz	100 Hz	250 Hz	100 Hz	50 Hz	40 Hz	20 Hz
Noise on Lowest Range $\mu \mathrm{J}$	1	2	20	20	40	15	30	40	40	60
Additional Error with Frequency \%	$\pm 2 \%$ to $\pm 2 \%$ $\pm 1 \%$ to $\pm 2 \%$ to $\pm 1 \%$ to 2 kHz 750 Hz 400 Hz 80 Hz $\pm 4.5 \%$ to 5 kHz					$\pm 1 \%$	$\pm 1 \%$	$\pm 1 \%$	$\pm 1 \%$	$\pm 2 \%$
Linearity with Energy for $>7 \%$ of full scale ${ }^{(c)}$	$\pm 1.5 \%$					$\pm 2 \%$				
Damage Threshold $\mathrm{J} / \mathrm{cm}^{2(b)}$										
<100ns	1					3				
$1 \mu \mathrm{~s}$	2					4				
300رs	20					15				
2 ms	40					40				
Maximum Average Power W	25,40 with optional heat sink					20,30 with optional heat sink				
Maximum Average Power Density W/cm²	100					120				
Uniformity over surface	$\pm 2.5 \%$ over central 20 mm					$\pm 2.5 \%$ over central 10 mm				
Weight kg						0.25				
Version	7Z02939									
Part Number						7Z02941				
Notes: (a) Calibration curve is verified and adjusted at specified wavelengths. At other wavelengths, there may be an additional error up to the value given.	Specified wavelengths: 193nm, $248-266 \mathrm{~nm}, 532 \mathrm{~nm}, 1064 \mathrm{~nm}$ and 2100 nm . Max additional error at $193 \mathrm{~nm} \pm 6 \%$. Max additional error at other wavelengths not specified above: $\pm 2 \%$. 193nm reading may need 1 min irradiation to stabilize.					Specified wavelengths: $248-266 \mathrm{~nm}, 355 \mathrm{~nm}, 532 \mathrm{~nm}, 1064 \mathrm{~nm}$ and 2100 nm . Max additional error at other wavelengths not specified above: $\pm 2 \%$. $<240 \mathrm{~nm}$ not calibrated				
Notes: (b)	For wavelengths $>2.1 \mu \mathrm{~m}$, derate to 40% of above values. For beam size $<=5 \mathrm{~mm}$. For 10 mm beam, derate to 40% of above value.					For wavelengths below 600 nm , derate to 60% of given values. For wavelengths below 240 nm , derate to $1 \mathrm{~J} / \mathrm{cm}^{2}$. For beam size $<=4 \mathrm{~mm}$. For 8 mm beam, derate to 50% of above values.				

Notes: (c) With the "user threshold" setting set to minimum. For other settings, the spec is for $>7 \%$ of full scale or greater than twice the "user threshold", whichever is greater.
The user threshold is available with StarBright, StarLite, Nova II, Vega or Juno. For other meters, the threshold is set to minimum and the linearity spec is $>10 \%$ of full scale. The PE-C series will only operate with Nova or Orion meters with an additional adapter Ophir P/N $7 Z 08272$ (see page 85). The adapter can introduce up to 1% additional measurement error.
The user threshold feature allows adjustment of the internal threshold up to 25% of full scale if desired to avoid false triggering in noisy environments.
For further information, see the FAQs on our Website.
Notes: (d) With the Laserstar, Pulsar, USBI, Quasar and Nova/Orion with adapter, only 2 out of 5 pulse widths settings are available; for the PE50-DIF-C model the $2 \mu \mathrm{~L}$ (displayed as " $10 \mu \mathrm{~m}^{\prime \prime}$) and 1 ms settings, and for the PE25BF-DIF-C model the 1 ms and 10 ms settings.

* For sensors drawings please see page 81

PE25BF-DIF-C

PE50BF-DIFH-C

PE50-C / PE50BF-C

PE50BF-DIF-C / PE50-DIF-C

PE50BB-DIF-C

